
fts>.

ftiji^^jjg

>/ ESD-TR-76-297

DRI Call No. ?yyv/
Copy ^■tH^fe,■ Sftv KERNEL

CERTIFICATION PLAN

HoneyweH Informa'-ion Systems, Inc.
FederaT Systems Operations
7900 Westpark Drive
McLean, VA 22F0F

and

Stanford Research Institute
333 Ravenswood Avenue
Mehfo Park, CA 94025

Jufy f976

Approved for Pubfic Release;
Distribution Unlimited.

2

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

nil liii

LEGAL NOTICE

When U. S, Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby Incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or In any way sup-
plied the said drawings, specifications, or other data Is not to be regarded by
Implication or otherwise as In any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may In any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for publication."

WILLIAM R. PRICE, Capt, USAF
Techniques Engineering Division

DONALD P. ERIKSEN
Techniques Engineering Division

FOR THE COMMAN

STANLEY 7. DERESKA, Colonel, USAF
Deputy Director, Computer Systems Engineering
Deputy for Command and Management Systems

SECURITY CLASS'FICATION OF THIS "AGE (Wbe„ DatB Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMDER

ESD-TR-76-297
2. GOVT ACCESSION NO.

4. TITLE (and Subtitle)

MULT1CS SECURITY KERNEL
CERTIFICATION PLAN

7. AUTHORfs;

9. PERrORMING ORGANIZATION NAME AND ADDRESS
Honeyweff Info, Systems, Inc. Stanford Res. Institute
Federal Systems Operations 333 Ravenswood Ave,,
7900 Westpark Drive Menlo Park, CA 94025
McLean, VA 22101
II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom AFB, MA 0173F

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. PECIO'EKT"-, CATALOG NUMBER

5. TYFE OF REPORT S PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

8. CON! RACT OR GRANT NUMBERfs;

Fr9628-74-C-0f93

10. PPOGPAM ELEMENT. PROJECT, TASK
APEA ^ WORK UNIT NUMBERS

CDRL Item A020

12. REPORT DATE

July 1976
13. NUMBER O* PAGES

43
14. MONITORING AGENCY NAME & ADDRESS^ di/ferenl from Controlling Oltice) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED

tSa, DECLASSIFI CATION/DOWN GRADING
"" .EDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for Public Release; Distribution Unlimited,

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side II necessary and identify by block number)

Multilevel security certification
security kernel
top-level specifications
Specification and Assertion Language
0-Functions

V-Functions
Correspondence Proof
Correctness Proof

20, ABSTRACT ^Continue on reverse side If necessary and identify by block number)

This report describes the methodology for formal
approach of a security kernel implementation with r
top-level specifications of that kernel. An illust
proofs of correspondence between the kernel specifi
the desired multilevel properties (the security mod
in the report. This methodology developed by Stanf
Institute employs a formal hierarchical decompositi

fContinued on reverse si del

certification
espect to the
ration of the
cations and
el) is included
ord Research
on of the design

DO , ^N
RM73 1473 iDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (\Vhen Data Entered)

SECURITY CLASSIFICATION OF THIS PACE(When Date Entered)

20. ABSTRACT

with formally stated specifications for each desired property,
The report describes this methodology and its application to
the task of developing the certifiable security kernels for
Multics and the Secure Front-End Processor (STEP).

-\

SECURITY CLASSIFICATION OF THIS PAGEfWTien Data Entered)

PREFACE

This report presents a plan to certify the security kernels of
Multics and its Secure Front-End Processor (SFEP) for Project
Guardian. This document was prepared by F. J. Feiertag, K. N.
Levitt, P. G. Neumann, and L. Robinson of Stanford Research
Institute as a subcontractor to Honeywell in this program.

Because of funding limitations, the Air Force terminated the
effort which this document describes before the effort reached
its logical conclusion. This report is incomplete but was
published in the interest of capturing and disseminating the
computer security technology that was available when the .effort
was terminated. Air Force technical comments are included as an
appendix to identify unresolved technical issues at the time of
the report.

This report was to describe a methodology for demonstrating that
a specific security kernel implementation effectively provided
the security controls which a mathematical model has shown to be
sufficient to comply with the Department of Defense Information
Security Program. However, the report only describes the
methodology for demonstrating the correspondence between the
model and a high level specification of a security kernel. The
effort was terminated before developing techniques to deal with
lower level representations of the security kernel.

Page 2

TABLE OF CONTENTS

PREFACE

I. BACKGROUND

Summary
Introduction

II. THE METHODOLOGY FOR DESIGN AND IMPLEMENTATION

(50) Interface Definition
(51) Hierarchical Decomposition of the System
(52) Module Specification
(53) Mapping Functions
(54) Implementation

THE METHODOLOGY FOR VERIFICATION 5

THE BASIC MULTILEVEL SECURITY MODEL 7

SPECIFICATION LANGUAGE PROPERTIES RELATED
TO SECURITY 8

REFORMULATION OF THE SECURITY PROPERTIES 9

SPECIFICATION FOR THE MULTICS KERNEL TO SUPPORT
THE MULTILEVEL ACCESS PROPERTIES 10

VIII. CORRESPONDENCE PROOFS BETWEEN SPECIFICATIONS AND
THE MULTILEVEL ACCESS PROPERTIES 11

IX. TOOLS TO SUPPORT THE DESIGN AND THE CORRESPONDENCE
PROOFS 13

X. IMPLEMENTATION CONSIDERATIONS 14

XI. TOOLS TO SUPPORT IMPLEMENTATION 15

XII. CONCLUSIONS 15

APPENDIX A. PROOF OF MULTILEVEL SECURITY IN THE MULTICS A-l
SPECIFICATION

-

APPENDIX B. AIR FORCE COMMENTS B-l

REFERENCES 19

III.

IV.

V.

VI.

VII.

Page 3

for the
e security

I. BACKGROUND

SUMMARY

This document outlines the approach considered feasible
development of a security kernel for Multics whos_
properties can be formally verified with respect to the top-level
specifications of the kernel. An illustration of the proofs of
correspondence between the kernel specifications and the desired
multilevel properties is given in Appendix A. It is also shown
hov these proofs may be carried out automatically. The approach
given here is also applicable to proofs of program correctness,
i.e., consistency between the specifications and the programs
implementing those specifications. However, proofs of program
correctness are not considered here.

The approach relies heavily on the use of a formal methodology
for the design, implementation, and proof of computer systems.
This methodology has been developed at Stanford Research
Institute (SRI) and is being applied to the design of several
systems, including a provably secure operating system (PSOS) and
several user environments intended to be implemented on it, an
ultra-reliable computing system with software-implemented fault
tolerance (SIFT) for commercial aircraft, and a
message-processing system. Other applications are also
anticipated. The methodology employs a formal hierarchical
decomposition of the design, with formally stated specifications
for each system function and formal assertions about each desired
property. This report describes the methodology, which is
considered to be particularly appropriate for the task of
developing the certifiable security kernels for Multics and the
Secure Front-End Processor (SFEP).

The basic design approach is to isolate all nondiscretionary
(i.e., mandatory) security requirements into a kernel, roughly
corresponding to a stripped-down Multics Ring 0. Preliminary
specifications for the kernel functions are found in Stern [76].
Bell and LaPadula [74] have precisely formulated the desired
security properties for the Multics security kernel
specifications. In order to support the proof of these
properties, SRI has reformulated the Bell and LaPadula model in
terms of the primitives of the methodology. This reformulation
is summarized here, and provides the basis for proof of the
correspondence between these properties and the specifications
for the Multics kernel.

PAGE 4

INTRODUCTION

Two concepts are basic here, namely SECURITY and INTEGRITY.
Intuitively speaking, security deals with the SENSITIVITY of
information, and is intended to prevent unauthorized READING of
information (i.e., a COMPROMISE of sensitive information).
Integrity, on the other hand, deals with the trustworthiness of
information, and is intended to prevent unauthorized WRITING (or
overwriting) of information (i.e., a CONTAMINATION of trustworthy
information).

In order to be applied to a computer system, these concepts must
be changed somewhat. A computer system, instead of having people
reading and writing information, has only INFORMATION TRANSFER
between the various information repositories in the system,
including the input-output devices. Thus, we assume that each
information repository in a computer system has both a security
level and an integrity level, and that only people who are
cleared to the appropriate levels can have access to the
information in a given repository. Then, security is concerned
with preventing the flow of information from a repository at a
given security level to one at a lower security level.
Similarly, integrity is concerned with preventing the flow of
information from a repository at a given integrity level to one
at a higher integrity level. Thus the two concepts are duals.
In our formal proofs, we define information repositories and
information flow, and assign a security level and an integrity
level to each such repository.

We have developed a language for writing specifications and
assertions in accordance with the methodology. This language is
called SPECIAL (SPECIfication and Assertion Language) (see
Robinson et al. [76], Roubine et al. [76]). In addition, we have
developed on-line tools to support the use of this language.
These tools are intended to simplify the overall development and
proof effort. They contribute to the design by providing an
on-line editable form for specifications, with automated checks
of syntactic consistency. These tools also contribute to the
correspondence proofs of the security of the design. Additional
tools have been outlined that will make the correspondence proofs
almost completely automatable.

We have also developed and are continuing to develop tools for
stating and proving semantic properties of programs. These tools
are compatible with the tools mentioned above to support
specifications and correspondence proofs. As more of these
verification tools become available, semi-automatic proofs of
implementation correctness will become more feasible.

This report is organized as follows. The methodology is
summarized, first with respect to design and implementation, then
with respect to verification. The desired properties of the Bell
and LaPadula model are then reviewed. Properties of SPECIAL are

PAGE 5

summarized, and the desired security and integrity properties of
the model are explicitly reformulated using the concepts of
SPECIAL. Following a brief overview of some relevant design
issues, the correspondence proofs between the reformulation of
the model and the specifications for the visible interface are
discussed. These concepts are also seen to apply to other
properties of systems. Tools to support the verification effort
are also discussed, as are several implementation considerations.
Detailed examples of proofs for the specifications of Stern [76]
are given in Appendix A.

II. THE METHODOLOGY FOR DESIGN AND IMPLEMENTATION

Our methodology has been described in detail elsewhere (Robinson
et al. [75], Robinson and Levitt [75], Neumann et al. [75]), and
continues to evolve. The methodology separates the development
of a computer system or subsystem into stages corresponding to

(50) the choice of the visible interface,

(51) the hierarchical design,

(52) the specification of each function at each node of the
hierarchy,

(53) the definition of mappings among the data
representations at connecting nodes, and

(54) the writing of implementation programs for the
functions at each node.

These stages of design and implementation are as follows.

(50) INTERFACE DEFINITION

In the initial stage (SO), the desired visible interface is
defined. In the case of Project Guardian, this is the interface
to the kernel. This "top-level" interface is then decomposed
into a set of MODULES (i.e., a set of facilities), each of which
manages OBJECTS of a particular type. An object is a system
resource such as a segment, a directory, or a process. Each
module consists of a collection of FUNCTIONS (corresponding to
operations and data-structure accesses). Each function has an
argument list and can be invoked by a program or directly by a
user. Each function is either an O-function (Operation), which
changes the state of the module to which it belongs, a V-function
(Value-returning), which characterizes the state of the module,
or an OV-function, which both changes the state and returns a
value.

(51) HIERARCHICAL DECOMPOSITION OF THE SYSTEM

PAGE 6

The modules of the visible interface, together with other modules
whose functions are hidden by the interface but are part of the
eventual implementation, are arranged into a hierarchy of
collections of modules. For descriptive simplicity, we assume
here that there is only one visible interface, and so we may also
assume that the hierarchy is a linear ordering of these module
collections, each of which can then be referred to as a LEVEL.
(For all cases considered here, there is no loss of generality in
this simplified description.) The implementation of each level
depends only on the next lower level. However, a module may be
included in more than one level of the design, as for example the
module supporting the "user" hardware instructions, which would
be part of most levels of a typical operating system. The
structure of the decomposition is thus explicitly declared at
this stage.

(S2) MODULE SPECIFICATION

For each module, a FORMAL SPECIFICATION is developed (see Roubine
et al. [76]). In this methodology, specifications are used that
are similar to those suggested by Parnas [72]. However, we
extend Parnas' original approach substantially, in that the
specification language and the hierarchical structure have been
formalized, and are supported by an on-line environment.

V-functions of a module are either PRIMITIVE (necessary for
characterizing the state of the module) or DERIVED (computed from
the values of other V-functions). Some V-functions are VISIBLE at
the interface to a module (i.e., can be called by programs),
while others are HIDDEN.

The specification of each 0- or OV-function describes precisely
the effect of that operation as a state change. The state change
is defined by a set of EFFECTS, each of which relates values of
primitive V-functions before the call on the specified 0- or
OV-function and values of those primitive V-functions after the
return from that call. The specification of each V-function
gives either the INITIAL VALUE of the function (if it is
primitive), or its DERIVATION from primitive values (if it is
derived) . The specification for each visible function also gives
EXCEPTION CONDITIONS for which a call on that function is to be
rejected. Specifications are written independently of most
implementation decisions concerning the module. For a
well-conceived module, the specification is usually much easier
to understand than its implementing program (see (S4)).
Specifications are written in the language SPECIAL, discussed
below. Completeness is implied by the semantics of SPECIAL, in
that any primitive V-function values that are not mentioned in
the specification of an 0- or OV-function remain unchanged.
Therefore the omission of a desired effect may result in an
unfortunate specification, but will not result in an inconsistent
one. Consequently, there can be no unspecified side-effects at
the level of the specified function.

PAGE 7

{S3) MAPPING FUNCTIONS

For each module above the lowest level of the design, a MAPPING
FUNCTION is written that characterizes the state of the module in
terms of the states of lower-level modules. A mapping function
is written as a set of expansion rules, in each of which a
higher-level V-function value is expanded as an expression
containing lower-level V-function values. These expansion rules,
called MAPPING FUNCTION EXPRESSIONS, are also written in SPECIAL.
In this way assumptions are explicitly stated as to how the data
structures of a module are represented in terms of lower-level
modules. For example, a mapping function would relate the data
structure of a user process to that of a system process, or a
segment to a sequence of pages.

{S4) IMPLEMENTATION

Programs are then written to implement the visible functions of
each level (except for the lowest level) in terms of those at the
next lower level. Such programs are called ABSTRACT PROGRAMS
since they use functions that implement abstract operations
specified at lower levels of the system. Various implementation
languages are possible. For present purposes, PL/I or a subset
thereof may be considered adequate. Such programs may be
compiled directly (with calls on lower-level programs) .
Optimization can them lead to more efficient programs by
application of correctness preserving transformations.

Stages 0, 1, 2, 3 and 4 formalize respectively the following five
conventional steps in software development: interface definition
and decomposition; system modularization; specification; data
representation; and coding. The results of stages 0, 1 and 2 are
considered to constitute the DESIGN, while those of Stages 3 and
4 constitute the IMPLEMENTATION. In the methodology referred to
here, stages 2, 3, and 4 are carried out for each level in the
hierarchy.

III. THE METHODOLOGY FOR VERIFICATION

The stages of development provide the basis for the verification
effort. Associated with each of these stages of design and
implementation is the statement or verification of correctness
properties appropriate for that stage, for each level in the
hierarchical design. At Stage 0, the desired properties of the
system can be explicitly formulated. One set of such properties
is given by the *-property and the simple security condition of
Bell and LaPadula [74], along with their duals for integrity.
These properties are discussed in the next section. Other
properties are also mentioned in this paper. At Stage 1, the
consistency of the hierarchical structure and of the naming of
functions can be demonstrated. At stage 2, the desired
properties can be proven about the design (i.e., about the

PAGE 8

specifications of the visible interface), independent of
subsequent implementations. Proofs are based on

* syntactic properties of SPECIAL (SYNTACTIC properties —
for the purposes of this paper — are those that are
algorithmically checkable, while SEMANTIC properties often
need a formal — undecidable — proof procedure to
establish),

* syntactic properties not in SPECIAL but required of all
specifications in the system under consideration,

* semantic properties of the specifications.

In addition, each module specification can be shown to be
self-consistent (i.e., satisfiable) at this stage. At stage 3,

design consistently with the specifications. For example, no two
distinct states at a higher level can both correspond to a single
state at a lower level. Consistency of the mapping functions
with the outputs of the previous stages is demonstrated similarly
to self-consistency of the specifications. At stage 4, the
implementation is proved to be consistent with the specifications

specifications of the moc^.^.- „»..... ~...c^~...- r--
mapping function expressions relating these modules

Once a verified system is obtained, it will tend to evolve with
time. Changes in specifications and in implementations require
corresponding reverification. However, reverification is
required only where changes in specifications and implementations
have affected the validity of the earlier verification. The
staged application of this methodology and the formally defined
modular decomposition can considerably simplify the
reverification effort.

On the basis of its applications to date, the staged development
appears to give — from one stage to the next — successively
greater confidence in the resulting systems, first in terms of
the suitability of the design and then in terms of the
correctness of its implementation. Subtle design bugs have been
discovered relatively easily in attempting proofs. Significant
savings in development costs can result from detection of
inherent insecurity in the design or implementation as early as
possible. Thus there is great desirability for automated tools
wherever possible.

PAGE 9

IV.. THE BASIC MULTILEVEL SECURITY MODEL

The security model of Bell and LaPadula [74] is considered next.
For security, each object (i.e., operating system resource such
as a segment or process) being written into or read from has a
classification level and a category set, collectively referred to
as the OBJECT SECURITY LEVEL. Also, each user has a clearance
level and a category set, collectively referred to as the USER
SECURITY LEVEL. Clearance and classification levels are linearly
ordered, e.g., TOP SECRET, SECRET, etc., while category sets are
partially ordered. One security level is AT LEAST that of
another if and only if its classification or clearance level is
at least that of the other and its category set contains the
category set of the other. Similarly, for integrity, each object
or user has its own integrity level, and partial ordering is
defined as for security levels. The ordered pair consisting of
the security level and the integrity level is called the ACCESS
LEVEL. (To avoid confusion, each such level is always identified
by an adjective. The term "level" used by itself refers to a
collection of modules of the hierarchical design.)

The Bell and LaPadula model is expressed as follows.

SECURITY CONDITIONS:

The *-property for security: Writing is permitted only into
an object with AT LEAST the user's security level. That is,
there is no writing downward in security level.

The simple security condition: Reading is permitted only
from an object with AT MOST the user's security level. That
is, there is no reading upward in security level.

Note that writing up is not considered to be insecure, but is
nevertheless often undesirable. For example, overwriting
existing information at a higher security level could be very
damaging. Thus writing up will also be forbidden in many cases.

The desired integrity conditions are formally the duals of these
two security conditions, as follows.

INTEGRITY CONDITIONS:

Writing is permitted only into an object with AT HOST the
user's integrity level. That is, there is no writing upward
in integrity level.

Reading is permitted only from an object with AT LEAST the
user's integrity level. That is, there is no reading
downward in integrity level.

In order to prove that these four properties hold with respect to
formal specifications, it is desirable to restate them in terms

PAGE 10

of the specification and assertion language, SPECIAL, which is
discussed next. We then give the reformulation of the desired
security properties in the form to be proven.

V. SPECIFICATION LANGUAGE PROPERTIES RELATED TO SECURITY

SPECIAL is a formal nonprocedural specification language. It
permits each function of a module to be specified independently
of its implementation, so that properties of the design may be
stated (in SPECIAL) and proved, independent of any
implementation.

Using the language SPECIAL, the effects of an 0- or OV-function
of a module of some level are defined by the new values of the
primitive V-functions of the level, related to the old values of
those V-functions, to the arguments to the specified function,
and to the parameters of the modules of the given level. (A
PARAMETER of a module is a symbolic constant that is fixed for
each particular instance of that module, as for example the
maximum size of a segment.) Similarly, the value of a derived
V-function or an exception condition is defined in terms of the
values of the primitive V-functions of the level, the arguments
of the specified derived V-function, and parameters of the level.
The initial values of primitive V-functions are defined in terms
of the module parameters and the arguments of the function. The
following definitions are useful.

A primitive V-function value is MODIFIED by the specified
function if and only if it appears as a new value in an
effect.

A primitive V-function value is CITED by the specified
function if and only if it appears as an old value in either
an effect, an exception, or a derivation.

SPECIAL requires that all V-function values cited or
modified in any module specifications must be V-functions of
the design level to which the given module belongs.
A WRITE REFERENCE is a modified V-function value, or the
value returned by a visible V-function or an OV-function, or
the value of an exception condition.

A READ REFERENCE is a cited V-function value, or a parameter
of the level of the specified function, or an argument to
the call on that function.

A write reference is DEPENDENT on a read reference in a
specification if and only if there exist two different
legitimate values for the read reference that would cause
the write reference to assume correspondingly different
values.

PAGE 11

It should be noted that exception conditions are included in the
definition of a write reference because the presence or absence
of an exception condition can itself result in information
transfer. The occurrence of an exception condition can be viewed
as a status value that is returned for each function call.

VI. REFORMULATION OF THE SECURITY PROPERTIES

The access properties given in Section IV are now reformulated.
In the specifications of each function of the visible interface,
each primitive V-function has an access level associated with it.
Similarly, each process able to call that interface has an access
level. The arguments of all visible functions are without loss
of generality assumed to be at the same level as the caller
(i,e., the process invoking the function), since they are
supplied by the caller. (If they originated at a lower level,
they could have been copied upward.) The desired security
conditions may then be expressed in terms of SPECIAL as follows.

SECURITY CONDITIONS:

In the specification of a visible function, the security
level of each write reference must be

(a) AT LEAST the security level of the caller, and

(b) AT LEAST the security level of each read reference upon
which the write reference is dependent.

These properties satisfy the basic intuitive notion that there
should be no flow of information downward to a lower security
level. The duals for integrity are achieved by interchanging
SECURITY and INTEGRITY, and interchanging AT LEAST and AT MOST,
as follows.

INTEGRITY CONDITIONS:

In the specification of a visible function, the integrity
level of each write reference must be

(a) AT MOST the integrity level of the caller, and

(b) AT MOST the integrity level of each read reference upon
which the write reference is dependent.

These conditions must be satisfied by the specifications for the
multilevel security interface for the Multics kernel. In fact
the illustrative proofs of Appendix A show that the
specifications can be written so that these properties can be
proved automatically. We omit showing that the stated conditions
imply conformance with the Bell and LaPadula model as stated
here. However, the reformulation given here is slightly

PAGE 12

■

different from that of Bell and LaPadula in that it permits
writing up of information derived from a security level higher
than that of the caller. This is not a violation of security,
and permits greater flexibility in the design.

The correspondence between these properties and the
specifications for a set of visible functions for some system
guarantees that if the system was initially in a secure state,
that it will subsequently be in a secure state after the
execution of a call on any of the functions of the visible
interface. It remains, however, to show that the initial state
is secure. Checks on the consistency of the initial conditions
can be made in a way similar to the above correspondence proofs.

In Millen [75], there are three additional conditions. These
relate to the invariance of access levels of information
repositories (the TRANQUILITY PROPERTY), to the prohibition from
reading deleted information, and to the compulsory overwriting of
deleted information before reuse (these last two properties
called the RESIDUE PROPERTIES). These properties are trivially
satisfied by our approach, as seen in Section VIII.

The above multilevel access properties must then hold for the
specifications of every 0-, 0V-, and V-function visible at the
interface. That is, no calls of a visible 0-, 0V-, or V-function
are defined except those satisfying the above security and
integrity conditions. Instead of returning an exception on a
prohibited call, every possible call follows the security rules.
The proof technique is illustrated below, following a summary of
a typical design to support the access properties.

VII. SPECIFICATIONS FOR THE
MULTILEVEL ACCESS PROPERTIES

MULTICS KERNEL TO SUPPORT THE

The interface to the Multics kernel looks much like the existing
Multics Ring 0 interface, except that security levels and
integrity levels are associated with every object visible at that
interface. However, much of the unnecessary portions of Ring 0
have been or will have been removed, incorporating some of the
ideas of Schroeder [75].

The interface visible outside of the kernel is formed from the
interfaces of various modules, for which specifications exist
(Stern [76]). This interface includes the following modules.
(Note that input-output is currently missing, along with the
trusted subjects , of reconfiguration and administration —e.g.,
of reclassification)

address spaces
processes
segments
quota cells

PAGE 13

volumes (on secondary storage)
access levels (security and integrity levels)
clock

An overview of a proposed kernel design decomposition is as
follows, from highest kernel level to the lowest. The hardware
consists of the main processors (Honeywell 68/80) and the secure
front-end processor (SFEP).

user-visible input-output (to support the SFEP)
address spaces
(user) processes
segments
quota cells
volumes
access levels
supervisor-only segments
paging
input-output for system storage devices
system processes
interrupts and faults
resident segments
input-output hardware other than the SFEP
machine instruction set (Honeywell 68/80)
directly addressable memory (Honeywell 68/80)
clock (Honeywell 68/80)

Note that the objects of the top six levels of the decomposition
all have access levels associated with them. The lower-level
objects need not, although it may be convenient to give some of
them security levels for purposes of proving program correctness.
Note also that the SFEP has its own interface and its own
decomposition into software and hardware.

VIII. CORRESPONDENCE PROOFS BETWEEN SPECIFICATIONS AND THE
MULTILEVEL ACCESS PROPERTIES

We now describe the proof procedures used to demonstrate
multilevel security in the Multics kernel. Proofs of the
correspondence between the specifications and the reformulated
multilevel access properties depend on the syntax and the
semantics of the specifications. As noted above, the syntactic
properties are of two kinds: those that are intrinsic in the
language, and those that are extrinsic to the language but
imposed on all specifications to be proved secure. As seen
below, we rely on syntactic properties wherever possible, in
order to simplify the proof effort.

The proof is based on the permanent association of access levels
with V-function instantiations and processes (e.g., users). A
V-FUNCTION INSTANTIATION is the V-function together with a
specific set of argument values for the V-function. The system

PAGE 14

descr
proce
proce
f unct
be ch
the
canno
addit
is tr
ins ta
itsel
now
corre
acces

iption mus
ss into
ss is impl
ion. The
a ng e d , bee
V-function
t be chang
ional pro
ivially sa
ntiation
f) , and th

have a
spondence.
s properti

t include functions that map each V-function and
an access level. The identity of the calling
icitly available as an argument to each visible
access level of a V-function instantiation cannot

ause to change the level would require changing
instantiation itself. The access level of a user

ed while the user is logged in. As for the
perties mentioned above, the tranquility property
tisfied (changing the access level of a V-function
is equivalent to changing the instantiation
e residue properties are not needed (even residues
ccess . levels), because of this permanent

It therefore remains to show that the multilevel
es are satisfied by the specifications.

The above definitions of read reference and write reference are
purely syntactic. However, the above definition of dependency
requires semantics as well. A more restrictive syntactic
definition of dependency can also be given, e.g., a write
reference is dependent on a read reference in a given function if
and only if both references occur in the same exception, effect,
or derivation within that function.

There are sev
dependency,
V(x) + Vl(x)
old value VI(
although it
'Vfx) is depe
that an effe
position of a
caller is a
syntactic de
the semantic
the problem o
and then to p
syntactic cri

eral problems with a purel
however. Note that in the
- Vl(x), the new value 'V(
x) under the semantic d
would be under the synta

ndent on V(x) under both
ct of the form 'Vfx) = V(x
security level lower than
violation of Security
finition of dependency, bu
definition. Thus it seems
f detecting dependency is
erform semantic checks on
teria.

y syntactic definition of
following effect, ^(x) =

x) is not dependent on the
efinition of dependency,
ctic definition. However,
definitions. Note also

) refering to a V-function
the security level of the
Condition (a) under the
t is not a violation under
that the best solution to
to use syntactic checks,

the cases that violate the

A specification that mentio
new value of a primitiv
read references is said to
is a potential source of
malicious programmer choos
channel involving that
nondeterminism from a speci
and derivation be written
reference> = <expression c
special semantic rules appl

ns, but does n
e V-function i
be NONDETERMI
information le
es to signal
nondetermini

fication by in
in a canonic
ontaining only
ying to quanti

ot uniquely define, the
n terms of its dependent
NISTIC. Nondeterminism
akage, for example, if a

information via some
sm. We can eliminate
sisting that each effect
al form (e.g., <write
read references>), with

fication.

Arbitrary security policies may also be imposed on top of such
mechanisms. An example is provided by the access control list of
Multics. Although these are not a part of the presently designed
security kernel, the proof approach is also applicable to such

PAGE 15

policies.

IX. TOOLS TO SUPPORT THE DESIGN AND THE-CORRESPONDENCE PROOFS

We have developed an on-line environment to support the first
four stages of the methodology, i.e., the interface definition,
the hierarchical decomposition, the specifications, and the
mapping functions. It is also useful in performing the syntactic
checks needed in the proofs of correspondence between the desired
properties and the specifications. The design of this
environment is open-ended, and is expected to be extended to
support implementations and proofs of implementations.

The environment currently runs on TENEX. The necessary
translation routines have been written to convert the INTERLISP
programs on TENEX to MACLISP for Multics, so that the environment
could rather easily be made to run on Multics — although the
error handling mechanism embedded in INTERLISP is different from
that in MACLISP. The environment is directly applicable to the
Multics security kernel. The environment currently exists in
three parts, as follows.

(PI) The HIERARCHY MANAGER, which permits the establishment
of a hierarchy of collections of modules, and which is
responsible for maintaining the design structure.

{P2) The SPECIFICATION ANALYZER, which ■ determines if each
module specification is syntactically correct. This part
includes type checking.

{P3) The MAPPING FUNCTION ANALYZER, which determines if the
mapping function expressions are syntactically correct and
syntactically consistent with the specifications of the
modules involved.

In addition to these existing tools, a fourth tool is desirable
to prove those cases involving semantic dependencies in the
correspondence proofs.

(P4) The MODEL CONSISTENCY CHECKER, which performs the
syntactic checks for correspondence proofs that are not a
part of the specification language syntax checking, which
performs simple semantic checks, and which also generates
logical formulae whose validity is equivalent to the
satisfaction of the more complicated semantic conditions for
consistency with the model.

Based on experience to date, the generation of the logical
formulae is straightforward. These conditions can be proved by
hand or with machine assistance. Doing proofs on-line will be
helpful in eliminating human error from the proof process.
Essentially all of the correspondence proof effort can be
mechanized by these tools. That is, all but a few special cases

PAGE 16

can be treated automatically. The remaining cases, once
identified, can be characterized, and most of those can then be
treated automatically from then on by generalizing the special
cases.

X. IMPLEMENTATION CONSIDERATIONS

The choice of a programming language for use with the methodology
is not critical with respect to merely obtaining an
implementation. PL/I is suitable for the task, although it is
desirable to constrain the language somewhat to increase the
correctness of the resulting code. However, the choice of
programming language strongly influences the provability of the
resulting programs. To support proofs of program correctness,
the language should be well structured and should provide
considerable intrinsic security, e.g., via strong type checking
and restrictive scope rules. It must relate well to the
methodology. It should simplify the task of program
verification. It should include some of the desirable features
of EUCLID, ALPHARD, SIMULA and CLU (such as protection and data
abstraction).

The problem of implementing a module that is shared by concurrent
processes is important in a general way, as well as with respect
to security. The SRI methodology includes a model of concurrent
computation with which it is possible to state and prove that a
shared implementation is correct. In addition, special
synchronization conditions have been derived under which a set of
correct stand-alone programs may be automatically modified so
that together they constitute a correct concurrent
implementation. Thus programs can be verified in isolation. If
the required synchronization conditions are satisfied,
correctness in the real operating environment is immediately
assured, given correct hardware operation.

Thus the correctness of implementation depends on the correctness
of the specifications, the consistency of the implementation with
the specifications without regard to concurrency, and the
correctness of the synchronization conditions.

XI. TOOLS TO SUPPORT IMPLEMENTATION

In addition to the tools outlined above to support the design and
the correspondence proofs, the following tools are also under
development at SRI to support implementation and program
verification.

(P5) The PROGRAM HANDLER, which determines if each program
is syntactically correct, and which can also perform simple
semantic checks on the programs, such as those for the set
of synchronization conditions noted above.

PAGE 17

(P6) The DEVELOPMENT DATA-BASE MANAGER, which maintains a
data base of the specifications, programs, and proofs in
(PI) , (P2) , (P3) , (P4) , and (P5) , keeping track of which
modules are specified, mapped, implemented, and verified.

XII. CONCLUSIONS

The methodology discussed here has been applied to the
specification of several secure systems, and proofs of security
properties of the specifications have been carried out, partly
manually and partly with the help of on-line tools. The
correspondence proofs are seen to be quite simple, since they are
aided by 1) the syntax of the specification language and its
specification analyzer, 2) the abstraction afforded by the
specifications, and 3) the simplicity of the model. It is
expected that essentially all of the correspondence proof effort
can be automated by the tools outlined nere.

As a side note for the future, we have also made considerable
progress in proving the consistency of implementations and
specifications. The synchronization conditions are simple to
state and prove, and quite powerful. Thus the correspondence
between specification and implementation can be highly credible,
even in the absence of complete correctness proofs.

/

PAGE 18

REFERENCES

Bell and LaPadula [74] D. E. Bell and L. J. LaPadula, Secure
Computer Systems: Mathematical Foundations and Model, MITRE
Corp., Bedford MA (September 1974).

Lipner [75] S. B. Lipner, A Comment on the Confinement Problem,
PROC. FIFTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, ACM SIGOPS
REVIEW, vol. 9, no. 5, pp. 192 - 196 (19-21 November 1975).

Millen [75] J. K. Millen, Security Kernel Validation in
Practice, CACM vol. 19 no. 5, pp. 243-250 (May 1976).

Neumann [74] P. G. Neumann, Toward a methodology for designing
large systems and verifying their properties, 4. Jahrestagung,
Gesellschaft fur Informatik, Berlin, October 9-12, 1974, in
LECTURE NOTES IN COMPUTER SCIENCE, vol. 26, Springer Verlag,
Berlin, 1974, pp. 52-67.

Neumann et al. [75] P. G. Neumann, L. Robinson, K. N. Levitt, R.
S. Boyer, and A. R. Saxena, SRI Final Report, Project 2581, 13
June 1975.

Parnas [72] D. L. Parnas, A Technique for Software Module
Specification with Examples, CACM vol. 15 no. 5, pp. 330-336 (May
1972) .

Robinson and Levitt [75] L. Robinson and K. N. Levitt, Proof
Techniques for Hierarchically Structured Programs, SRI Report
(January 1975). To appear in a future ACM publication.

Robinson et al. [75] L. Robinson, K. N. Levitt, P. G. Neumann,
and A. K. Saxena, On Attaining Reliable Software for a Secure
Operating System, PROC. INTERNATIONAL CONF. ON RELIABLE SOFTWARE,
SIGPLAN NOTICES, vol. 10 no. 6, pp. 267-284 (June 1975). A
revised and extended version is being published under the title,
"A Formal Methodology for the Design of Operating System
Software," in R. T. Yeh (ed.), CURRENT TRENDS IN PROGRAMMING
METHODOLOGY, vol. 1, Prentice-Hall (1976).

Robinson [76], L. Robinson, Specification Techniques, Proc. 13th
Design Automation Conference, IEEE cat. 76-CH1098-3C, pp. 470 -
478 (28-30 June 1976) .

Roubine and Robinson [76] 0. Roubine and L. Robinson, SPECIAL
(SPECIfication and Assertion Language): Reference Manual, SRI
Technical Report CSG-45 (August 1976), also issued as Honeywell
TCL No. 23.

Schroeder [75] M. D. Schroeder, Engineering a Security Kernel for
Multics, PROC. FIFTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES,
ACM SIGOPS REVIEW, vol. 9 no. 5, pp. 25-32 (19-21 November 1975).

PAGE 19

Stern [76] J. Stern, Multics Security Kernel — Top-Level
Specification, Project Guardian Technical Report, Honeywell,
November 1976.

Wensley et al. [76) J. H. Wensley, M. W. Green, K. N. Levitt, R.
E. Shostak, The Design, Analysis, and Verification of the SIFT
Fault-Tolerant System, SECOND INT. CONF. ON SOFTWARE ENGINEERING,
San Francisco CA (13-15 October 1976).

PAGE 20

MULTICS SECURITY KERNEL CERTIFICATION PLAN

APPENDIX A

METHOD FOR PROVING MULTILEVEL SECURITY

R. Feiertag

ABSTRACT

This paper presents a formal model of multilevel security.
This new model is attractive because it has a simple intuitive
interpretation and can be directly applied to proving the multi-
level security of systems whose designs are specified in the
specification language SPECIAL. The multilevel security model
developed by Bell and LaPadula can be derived as a special case
of the general model described below and the security properties
(i.e., the simple security property and the ^-property) of Bell
and LaPadula are roughly equivalent to the strong properties (PZ)
below. It is shown how the model described below can be applied
to the proof of multilevel security of system designs expressed
in SPECIAL and an example of the proof technique is given. The
possibility of performing the proofs by semiautomated means is
then discussed.

MULTILEVEL SECURITY

In a multilevel secure system there is a predefined set of
security levels. The security levels are composed of clearances
(or classifications) and category sets, but the composition of the
security levels is an unimportant detail for purposes of this dis-
cussion and will be largely ignored. What is important is that
the security levels are partially ordered by the relation "less than"
represented by "<". Each process in a multilevel secure system is
assigned a security level. The processes may invoke functions that
change the state of the system and return values. Each function
instantiation (i-e-j a function with a particular set of argument
values) is assigned a security level. A process may only invoke
those instantiations of funtions that have been assigned the security
level of the process. A system is multilevel secure if and only if
the behavior of a process at some given security level can be
affected only by processes at a security level less than or equal to
the given level. Stated in terms of functions, this says that the
values returned by a function instantiation assigned some security
level can be affected only by the invocation of function instantiations
at lower or equal security levels. Stated in loose terms this means
that information can flow only upward in the system from processes
of lower security level to processes of higher security level.

PAGE A-l

FORMAL MODEL OF MULTILEVEL SECURITY

A multilevel system is defined to be the following ordered
n-tuple:

<S, s , L, "<", I, K, R, N>
0

where the elements of the system can be intuitively interpreted
as follows:

S - States: the set of states of the system

s - Initial state: the initial state of the system; s < S
0 0

L - Security levels: the set of security levels of the system

"<" - Security relation: a relation on the elements of L that
partially orders the elements of L

I - Visible function instantiations: the set of specifica-
tions of all the visible functions and operations; if a
function or operation requires arguments then the function
specification along with each possible set of arguments
is a separate element of I

K - Function instantiation level: a function from I to L
giving the security level associated with each visible
function instantiation; K;I->L

R - Results: the set of possible values of the visible
function instantiations

N - Interpreter: a function from IXS to RXS that defines
how a given visible function instantiation invoked when
the system is in given state produces a new state and a
result; N:IXS->RXS.

The precise interpretation of this model for the Multics specifica-
tion will be given below.

In order to define the model of multilevel security, it is
useful to define the following functions:

FCt) - the value of the function F is the first element of the
ordered n-tuple t

Z(t) - the value of the function Z is the last element of the
ordered n-tuple t

B(t) - the value of the function B is the ordered n-tuple t with
the last element removed

PAGE A-2

CCt,e) the value of the function C is the ordered n-tuple
t with the element e added at the end.

The following parts of the model can now be defined:

T The set of all finite ordered n-tuples of visible
function instantiations or, in other words, all
possible sequences of operations

*
T = I

M The state resulting from the given sequence of opera-
tions starting at some given state

M* SXT->S
MCs,t) = Z(N(Z(t), MCs, BCt)))3

E The sequence of operations that results when all the
operations whose level is not less than the given
level are removed from the given sequence of operations.

E;TXL->T
ECt,l) = CK(Z(t))<l V KCZ(t))=l) => CCE(B(t),l), Z(t))

V ~CK(Z(t))<l V K(Z(t))=l) => ECBCt),!)

Multilevel security can now be defined as follows:

* *

* CVi<I,s<S,t ,t <T) *
* 1 2 *

* E(t ,KCi))=E(t ,K(i)) (Pi) *
* 1 2 " *
* *

* => ?CNCi,M(s,t)))=FCN(i,M(s,t))) *
* 1 2 *
* *

This says that if two sequences of operations are each applied to
a system in the same state and if these sequences differ only in
operations whose level is not less than or equal to some level, then
any operation of that level that is invoked immediately following
the two sequences will return the same result. In other words, the
operations whose level is not less than or equal to this level cannot
effect results visible to the level.

PAGE A-3

STRONG MULTILEVEL SECURITY PROPERTIES

Unfortunately, it is difficult to prove that any specifica-
tion meets this definition because any direct proof would
require some induction on all possible sequences of function
instantiations. The number of such sequences is generally very
large. For this reason the following slightly more restrictive
set of properties is more useful for proof because it does not
involve sequences of function instantiations.

It is first necessary to introduct the notion of a partial
1

state. There is a partial state set S for each security level

1 of the system. The cross product of all the partial state sets
1

(X S) is isomorphic to the set of states (S). Therefore, each
VKL
state s<S can be represented by the ordered n-tuple consisting of

1 1
one element s from each of the partial state sets S .

Intuitively, one can think of a partial state set as all the state

variables assigned a given security level and a partial state set

as one set of values for these state variables.

The following useful functions can now be defined:
1

Q :s->S has as its value the partial state of
1 each s<S for the level 1.

1 k
Q :s-> x S has as its value the partial state of

vk<L|k<=l each s<S for all levels less than or
equal to 1

k
D :s-> x S has as its value the partial state of
1 vk<L|~Cl<=k} each s<S for all levels not greater than

or equal to 1

It is now possible to define three new security properties
whose conjunction is stronger than PI above:

PAGE A-4

AAAAftft*AAAi>:AAAAA#:*#:ftAAA*ftAftASSAAftA*fti>:ftftftft*ftftAftAAAAAftft*Aft**AAAA**Aft*AA

* .-•■■•

* CVKI) C3j)CVs<S) FCN(i,s)) = JCQ (s)) CP2a)

* 1
* CVi<I,l<L) C?J)CVs<S) Q CZCNCi,s})) = j CQ Cs)) CP2b)

ft

ft

ft
ft

* *
ft *

* (Vi<I,s<S) D (s) = D CZCNCi,s))) (P2c) *
* K(i) K(i) *
ft

1 *

The first property (P2a) states that the result of a function
instantiation at some level can be dependent only upon state
variables of a lower or equal level. The second property (P2b) states
that the value assumed by a state variable at some level due to the
action of some function invocation can be dependent only upon state
variables at a lower or equal level. The third property (P2c) states
that a function invocation at some level can only change the values
of state variables a greater or equal level.

PROOF OF STRONG PROPERTIES

The following is an outline of the proof that the strong
multilevel security properties CP2a, P2b, P2c) imply the general
multilevel security property (Vl); in other words that

ftftftftftftft*ft

* P2a § P2b § P2c => PI (Tl) *
* *
*ft

Using P2a in the last part of PI yields:

Cvi<I,t ,t <T) CHKVstS]
1 2

KCi) KCi)
1(Q CMCs,t))) = j(Q (M(s,t)))

1 2

=> F(NCi,M(s,t))) = FCN(i,M(s,t }))
1 2

and by eliminating the function j, the formula to be proven becomes

PAGE A-5

P2a § P2b § P2c

= >

Cvi<I,s<S,t ,t <T) CF1)
1 2

ECt ,KCi))=ECt ,KCi))
1 2

KCD KCi)
= > Q CMCs,t)}=Q CM(s,t))

1 2

Now consider the cases in PI when ECt ,K(i)) = E(t ,K(i)) is
1 2

false. In these cases the theorem Tl is trivially true. Next

consider the cases where ECt ,K(i)) = ECt ,KCi)) is true. These
1 2

cases require an inductive proof. The induction will be over the

length of the reduced sequence ECt,KCi}). Since only the cases

where the reduced form of the two strings t and t are equal are
1 2

being considered, it is known that the lengths of the two reduced

strings ECt ,K(i)) and ECt ,KCi}) will be equal.
1 2

The basis of the induction is a reduced length of 0. In this

case the sequences t and t can contain only function instantiations
1 2

whose level is not less than or equal to KCi). From property P2c
one can observe that a function instantiation whose level is not less
than or equal to KCI) cannot change the partial state of the system
at levels less than or equal to KCi). Therefore, the partial state
at levels less than or equal to KCi) must remain the same for
sequences whose reduced length is 0. For these sequences:

KCi) KCi)
Q CMCs,t)) = Q Cs)

and therefore, Fl is true.

For the purpose of accomplishing the inductive step in the
proof, define the function G :T->T to map a sequence of function

1
instantiations onto the beginning of that same sequence up to but
not including the last function instantiation whose level is less
than or equal to 1. Also define the function H :T->I to map a

1
sequence of function instantiations onto the last function

PAGE A-6

instantiation in the sequence whose level is less than or equal
to 1. If a sequence t has reduced length n with respect to
some level 1 then the sequence G (t) has reduced length n-1

1
with respect to 1. The induction hypothesis states that

KOO KCi)
Q CMCs,G Ct)))=Q CMCs,G (t])) for any two

KCi) 1 KCi) 2
sequences, t and t , whose reduced sequences are equal. Now it

1 2
is necessary to show that the last parts of sequences t and t

1 2
make identical changes to the partial states for levels less than
or equal to KCi). If H Ct) is not equal to H Ct) then

KCi) 1 KCi) 2
ECt }KCi))=ECt ,KCi)) is false and Fl is trivially true. Recall

1 2
that property P2b states that any partial state at some level
that results from the invocation of a function instantiation
must be a function of partial states with lower or equal level.
Therefore, the partial states with level less than or equal to
KCi) resulting from the invocation of H Ct) and H Ct)

KCi) 1 KCi) 2

KCi)
must be functions of Q CMCs,G Ct))) and

KCi) 1
KCi)

Q CM(s,G Ct))) respectively. If H Ct) is equal to
KCi) 2 KCi) 1

KCi) KCi)
H Ct) and since Q CM(s,G Ct))) = Q CMCs,G Ct)))
KCi) 2 KCi) 1 KCi) 2

from the induction hypothesis then the partial states resulting
from the invocations of H Ct) and H Ct) must be identical.

KCi) 1 KCi) 2
All that can be left in the sequences t and t after the last

1 2

function instantiation whose level is less than or equal to KCi)
are obviously function instantiations whose level is not less than
or equal to KCi). From P2c it is known that such function
instantiations cannot change partial states with levels less than or
equal to KCi). This completes the outside of the proof.

INTERPRETATION OF THE MODEL

In order to apply the security properties defined above to a
particular system design, it is necessary to relate the elements
of the model of a multilevel secure system to the specification
language and to the particular system. Recall that the model is the
following n-tuple:

<S, s , L, "<", I, K, R, N>
0

PAGE A-7

instantiation in the sequence whose level is less than or equal
to 1. If a sequence t has reduced length n with respect to
some level 1 then the sequence G (t) h^-s reduced length n-1

1
with respect to 1. The induction hypothesis states that

KCi) KCi)
Q CMCs,G Ct)))=Q CMCs,G (t))) for any two

KCi) 1 KCi) 2
sequences, t and t , whose reduced sequences are equal. Now it

12 ■
is necessary to show that the last parts of sequences t and t

1 2
make identical changes to the partial states for levels less than
or equal to KCi). If H Ct) is not equal to H Ct) then

K(i) 1 KCi) 2
E(t ,KCi))=ECt ,KCi)) is false and Fl is trivially true. Recall

1 2
that property P2b states that any partial state at some level
that results from the invocation of a function instantiation
must be a function of partial states with lower or equal level.
Therefore, the partial states with level less than or equal to
KCi) resulting from the invocation of H Ct) and H (t)

KCi) 1 KCi) 2
KCi)

must be functions of Q CMCs,G Ct))) and
Ka) i

KCi)
Q CMCs,G Ct))) respectively. If H Ct) is equal to

KCi) 2 KCi) 1
KCi) KCi)

H Ct) and since Q CMCs,G Ct))) = Q CMCs,G (t)))
KCi) 2 K(i) i KCi) 2

from the induction hypothesis then the partial states resultino-
from the invocations of H Ct) and H Ct) must be identical.

KCi) 1 KCi) 2
All that can be left in the sequences t and t after the last

1 2

function instantiation whose level is less than or equal to K(i)
are obviously function instantiations whose level is not less than
or equal to KCi). From P2c it is known that such function
instantiations cannot change partial states with levels less than or
equal to KCi). This completes the outside of the proof.

INTERPRETATION OF THE MODEL

In order to apply the security properties defined above to a
particular system design, it is necessary to relate the elements
of the model of a multilevel secure system to the specification
language and to the particular system. Recall that the model is the
following n-tuple:

<S, s , L, "<", I, K, R, N>
0

PAGE A-7

The elements of the model can he interpreted as follows for the
Multics specification:

S - States: all possible collective values of all the
primitive V-functions of the specification; each
state can be represented by a particular set of
values that the primitive V-functions can assume.

s - Initial state: the initial values of all the primitive V-
0 functions as given in the specifications.

L - Security levels: each security level is defined by
two values, the clearance and the category set; the
clearances are totally ordered.

< - Security relation: the security relation is a partial
ordering on the security levels; a security level is
less than (<) another security level if the clearance
of the security level is less than the clearance of the
other security level and the category set of the
security level is a subset of the category set of the
other security level.

I - Visible function instantiations: each visible function
of the specifications together with a set of possible
argument values to that function is a visible function
instantiation.

K - Function instantiation level: this is the level of the
visible function instantiation and must be defined for
each visible function instantiation.

R - Results: a result is the return value of a visible V-
and OV-function invocation and the number of the first
exception, if any, in a visible function invocation
whose value is true; i.e. a result are the visible
effects of the visible functions.

N - Interpreter: the semantics of the specification language.

1
The partial states S are represented by subdividing the primitive
V-function instantiations (i.e. primitive V-functions together with
a particular set of argument values) into disjoint sets, one set
for each security level. The partial state is determined by the value
of the primitive V-function instantiations that are members of the
partial state set.

PAGE A-8

STRONG SECURITY PROPERTIES IN TERMS OF SPECIFICATION LANGUAGE

The purpose of this section is to state the strong security
properties P2a, P2b, and P2c in terms o£ constructs of the
specification language. In order to formally relate the strong
security properties as given above in terms of the formal model
to the specification language it is necessary to have a formal
description of the semantics of the specification language.
Since such a formal description of the language has not been
completed, this section will discuss the strong security properties
in an informal manner. An English language description of
SPECIAL is given in the SPECIAL Reference Manual. The following
definitions will be useful in the discussion:

^A primitive V-function instantiation is said to be modified
by a particular visible function instantiation iff the
primitive V-function instantiation appears as a new (quoted)
value in the effects section of the specification of the
visible function and the value of the primitive V-function
instantiation could be changed by invoking the visible
function instantiation.

*A primitive V-function instantiation is said to be cited by
a particular visible function instantiation iff the primitive
V-function instantiation appears as an old (unquoted) value
in the specification of the visible function.

*A write reference in a visible function instantiation is a
primitive V-function instantiation, the return value of a
V- or OV-function, or the exceptions.

*A read reference in a function instantiation is a cited
primitive V-function instantiation.

^The value of a read reference is legitimate iffit can be
assumed by the cited primitive V-function instantiation after
some sequence of 0- or 0V- functions applied to the system in
its initial state.

^The value of a read reference is type legitimate iffit is of
the type of the cited primitive V-function.

^A write reference is dependent upon a read reference with
respect to a particular function instantiation iff there exists
two different legitimate values for the read reference that
would cause the write reference to assume correspondingly
different values as the result of the invocation of the function
instantiation.

PAGE A-9

A slightly stronger from of tke definition of dependency can be
obtained by substituting "type legitimate" for "legitimate". It
is easier to determine th.e type legitimate values of a read
reference titan it is to determine the legitimate values since
type legitimacy is a property of the language whereas legitimacy
is a property of a particular set of specifications. It is,
therefore, easier to identify dependencies if the type legitimate
version of the definition is ised; however, for the purposes of
this discussion either version of the definition of dependent
suffices.

Given the above definitions it is possible to easily state
the strong security properties in terms of the specification
language. Note first that the above definition of dependence
simply defines a functional relationship, i.e., if a write
reference is dependent upon a read reference then the value of
the write reference is simply a function of the value of the read
reference. Recall that property P2a states that the result of the
invocation of a function instantiation of some level is a function
of (i.e., is dependent upon) the values of the state variables
(i.e., the primitive V-function instantiations) of lower or equal
levels. The results are the return values of V- and OV-functions
and the exception conditions of all visible functions. Therefore,
property P2a can be restated as:

P2a The return value of a V- or OV-function and the exceptions
of a visible function instantiation can be dependent, with
respect to that visible function instantiation, only upon
read references of lower or equal level.

Property P2b states that the values assumed by a state variable
(i.e., modified primitive V-function instantiation) at some level
can be dependent, with respect to a visible function instantiation,
only upon state variables (i.e., cited primitive V-function
instantiations) at a lower or equal level. -Restated this is:

P2b The value assumed by a modified primitive V-function
instantiation at some level can be dependent, with
respect to a visible function instantiation, only upon
read references at a lower or equal level.

The similarity in the restatements of properties P2a and P2b and
the fact that the return value, exceptions, and modified primitive
V-function instantiations of a visible function are simply the
write references of the function allows the following combination
of the statements of the two properties into:

P2a,b For each visible function instantiation, the security
level of each write reference must be at least the
security level of each read reference upon which the
write reference is dependent.

PAGE A-10

Property P2c states that the invocation of a function
instantiation at some level can change only the values of state
variables (i.e., modified primitive V-functions) at greater or
equal levels. If the return value and the exceptions are
defined to be at the level of the function instantiation of
which they are a part then this property can be restated as:

P2c For each visible function instantiation, the security
level of each write reference must be at least the
security level of the function instantiation.

Combining this statement and P2a,b above gives a general restate-
ment of the strong security properties in terms of SPECIAL:

* A

A

A
* P3 For each visible function instantiation, the security level

of each write reference must be at least the security
level of: *

A

(a) the function instantiation, and *

(b) each read reference upon which the write reference
* is dependent. *
A A

AA

Given a formal description of the semantics of SPECIAL, property P3
can be formally stated and the logical statement P3 => P2 can be
rigorously proven true.

DETERMINING DEPENDENCIES

This section discusses means for identifying dependencies.
The objective is to find some simple algorithm for identifying
dependencies. Unfortunately, determining if some write reference is
dependent upon some read reference is, in general, undecidable. The
approach taken here is to identify potential dependencies. If the
set of all write references of a specification is W and the set of all
read references is R, then the dependency relation DR is a subset of
WXR and the potential dependency relation PDR is a subset of WXR and
a superset of DR. If property P3 can be proven for potential
dependencies rather than for dependencies, then clearly P3 must be
true for dependencies. Property P3 for potential dependencies rather
than dependencies will be termed P4. The problem then becomes to
identify the set of potential dependencies and show that all
dependencies are included in this set. However, the cardinality of
the set of potential dependencies must be kept as small as possble
to make the proof of P4 tractable.

PAGE A-11

In order to simplify the following discussion, it will be
assumed that the specifications are in expanded form. An
expanded specification is one in which the substitutions result-
ing from DEFINITIONS, EXCEPTION_OF, and EFFECTS_OF expressions
have been performed. These substitutions are straightforward.
In and expanded specification all read and write references
relevant to a visible function instantiation will be explicitly
present in the body of that visible function's specification.
Specifications may still be written in unexpanded terms of
expanded specifications.

There are certain types of expressions that are legal in
SPECIAL, but make it very difficult to determine if dependencies
or potential dependencies exist. To eliminate the necessity of
dealing with such expressions a canonical form for specifications
is introduced. The canonical form is a restriction of SPECIAL.
In the canonical form, the grammar of SPECIAL is modified and
augmented as follows. An <expression> in the body of a function
specification cannot contain the symbol which is the identifier
for the return value of the function. The definition of <call>
is modified to be:

<call> ::= <symbol> '(' [<expression> (',' <expression>)^l ,),

The purpose of these two changes is to eliminate the possibity of a
write reference in an<expression>. A <write reference> is either
a quoted V-function or the identifier of the return value for
visible function in which the <write reference> occurs. The
following definitions are added (note that in the TYPECASE alterna-
tive of <canonical expression> below that <symbol> must not be
the identifier of the return value):

<canonical expression>
::= <write reference> '^ <expression>

| <canonical expression> AND <canonical expression>
<expression> '=>' <canonical expression>

| (FORALL | EXISTS) <qualif\declarationlist>
":" <canonical expression>

1 IF <expression> THEN <canonical expression>
ELSE <canonical expression>

| LET <qualification> (';' <qualification>)*
IN <canonical expression>

| TYPECASE <symbol> OF
(<canonical case> ';')+ END

<canonical case>
::= <typespecification> ':' <canonical expression>

and finally the definition of <effects> is changed to:

<effects> ::= EFFECTS (<canonical expression> ';')+

The purpose of the canonical form is to restrict how write
references can occur in specifications. This canonical form was
arrived at through experience with writing specifications and

PAGE A-12

attempts to prove the multilevel security of specifications. Our
experience shows no specifications that do not fit into this
canonical form.

In order to get some idea of how dependencies are indicated
by function specifications, it is necessary to have some rough
idea of the semantics of a function specification. For all visible
functions the semantics of exceptions can be stated as:

(Vi|0<i<=n) CC AND ~EX } AND EX) = CEV=i) (Sla)
0<j<i j i

(AND ~EX) = EV=0 (Sib)
(XKfn i

where EX is the ith exception, n is the number of exceptions,
i

and EV is the exception value. EV is the number of the first
exception whose value is true. If all the exceptions are false,
then EV is 0. In an 0- or OV-function the semantics of effects
are:

(AND ~EX) = (AND EF) (S2)
0<i<=n i 0<j<=m j

where EX , n, and EV are as above and EF is the ith effect and m
i i

is the number of effects. Note that in an OV-function the return
value is specified by the identifier given in the function header.
In a V-function the semantics of the derivation is:

(AND ~EX) = CRV=DE) (S3)
0<i<=n i

where EX , n, and EV are as above and RV is the value returned by
i

the function and DE is the derivation.

Consider now where potential dependencies can exist. As a
first approximation assume that a potential dependency exists
between all write references of a visible function instantiation
and all of its read references. This is clearly a superset of all
the dependencies that exist with respect to the function since the
semantics of SPECIAL does not allow the value of primitive V-functions
not appearing in the specification of a function to be changed by
the function and does not allow any new values to be dependent on
nonappearing primitive V-functions. Unfortunately, this rather
simple identification of potential dependencies includes too many
potential dependencies and it is not possible to construct useful
systems that are consistent with property P4.

PAGE A-13

Consider the three types of write references separately.
First consider the value of the exceptions, EV. EV is clearly
potentially dependent only upon read references in the excep-
tions section of the function specification. In fact, in some
circumstances it may be possible to prove that for some
instantiations of a visible function, that a particular excep-
tion is always true. In this case EV is potentially dependent
only upon read references in exceptions coming before the one
that is always true for these instantiations of the visible
function.

Now consider those write references that are modified
primitive V-functions. Modified primitive V-functions can only
occur in the effects section of an 0- or OV-function. A write
reference in an effect can only be potentially dependent upon
read references in that same effect and read references in the
exceptions. This follows from S2 above and the canonical form.
If a write reference appears in a series of conjoined expressions
then the write reference is not potentially dependent on read
references in any of the other conjoined expressions. This
follows from the definition of conjunction and the canonical
form.

Finally consider write references that are return values.
If the visible function is an OV-function then the rules for
modified primitive V-functions apply. If the visible function is
a V-function then the return value is potentially dependent upon
the read references in the exceptions and in the derivation.

In summary, the rules for potential dependency are as follows

PDR-^ The exceptions value is potentially dependent upon
read references in all exceptions up to the first
exception that is always true for the visible func-
tion instantiation.

PDR2 Each modified primitive V-function in an 0- or OV-
function and each return value in an OV-function is
potentially dependent upon read references in excep-
tions and all read references in the same effect as
the write reference with the exception of read
references in expressions conjoined with the
expression containing the write reference.

PDR3 The return value of a visible V-function is potentially
^ dependent upon read references in the derivation and

read references in exceptions.

PAGE A-14

The following provide interesting and important exceptions
to the above rules:

FALSE => exp_a
IF FALSE THEN exp_a ELSE exp_b
IF TRUE THEN exp b ELSE exp a
FORALL x INSET (J: exp_a
FORALL x FALSE: exp_a
EXISTS x INSET Q: exp_a
EXISTS x FALSE: exp_a
LET x INSET Q IN exp_a
LET x i FALSE IN exp_a

No write reference can be dependent upon any read reference in
exp_a of these expressions. This is evident from the semantics
of these expressions. Although it is unlikely to see expressions
precisely like these in well written specifications, it is
possible that such expressions effectively exist for some
instantiations of visible functions. Some examples of these will
be given below.

THE PROOF TECHNIQUE

Before summarizing the steps in the proof technique, one
further observation is useful. Not all quoted primitive V-functions
necessarily represent modified primitive V-functions and, therefore,
do not necessarily represent write references. For example in an
expression of the form

FALSE => "pvfCargs) = exp

the quoted primitive V-function pvf does not represent a write
reference because the expression does not constrain the value of
pvf(args) to change. This situation arises in all the expressions
listed in the previous paragraph as exceptions to the potential
dependency rules. Similarly, a quoted primitive V-function in the
effects section of a visible function instantiation in which some
exception is always true is never a write reference.

The proof of multilevel security of a given specification is
quite straightforward. For each visible function specification
it must be shown that each instantiation of that function is con-
sistent with property P4. This can be accomplished by proving that
P4 holds for all possible argument values to the function or it can
be accomplished by dividing the possible sets of arguments into
collectively exhaustive subsets and then proving P4 for each of the
subsets. For each subset the write references must be identified
and then it must be shown that for each write reference there is a
modified V-function, that the level of that V-function is greater
than or equal to the level of the visible function instantiation.
Finally, it must be shown that for each write reference, each read
reference upon which the write reference is potentially dependent
has a level less than or equal to the level of the write reference.

PAGE A-15

Unfortunately, it is not always possible to determine the
level of a read or write reference in a particular function
instantiation by inspection of the specification. For example,
an argument to some primitive V-function might be the value of
some other primitive V-function. In this case it is necessary
to know what values the other primitive V-function might have
in order to know what the level of the read reference is. Such
information may be deducible from the specification of the visible
function in question (local assertion) or it may require
proving some invariant of the specification of the system as a
whole (global assertion). In either case it is necessary to
prove P4 for all possible values that the other primitive
V-function above may assume. Examples of this case are given
below.

EXAMPLE

The proof of the multilevel security of a specification will be
demonstrated using the specification given in Fig. 1. It is
necessary to use a rather simple example in order to be able to
describe the proof within a reasonable amount of space. Proofs
of large specifications are rather lengthy. The security levels
of the specification of Fig. 1 are given by the definition of
the security_level type. The definition of the security relation
(<) is given by the definition read_allowed in the specification,
i.e., the security level LI is less than or equal to the security
level L2 (L <=L2) iff read_allowed(L2, LI) is true. The level of
each visible function instantiation and each primitive V-function
instantiation is given in Fig. 2. Note that the specification
of Fig. 1 is not in expanded form because there are definitions
present. However, because these definitions contain no primitive
V-functions and because they succinctly express the security
relation, it is more convenient to deal with this unexpanded form.

Consider first the first visible function "create_seg". The
security level of all instantiations of this function (and its
arguments, parameters, exception value, and return value by
definition) is the value of its last argument "si". This function
has no exceptions and, therefore, the exception value cannot be
dependent on the system state. Look now at the write references
in the EFFECTS section. There are three quoted primitive V-functions
and one return value identifier. We must consider as potential
write references all those instantiations of the quoted primitive
V-functions subject to the constraints of the qualification of the
EXISTS statement. Using the security levels of the primitive
V-function instantiations given in Fig. 2, to demonstrate property
P4a we must prove that

for ^h_uid used(new_uid.id, si):
(vnewjaicT | h_uid_used(new_uid. id, si) A new uid.l=sl)
si <= si

PAGE A-16

for ■'h_seg_exists (new_uid) :
Onew_uid | h uid_used(new_uid.id, si) A new_uid.l=sl)
si <= new^iH". 1

and for "h contents(new uid, i):
Cvnew_ai3 | h^id^useJCnewjuid.id, si) A new_uid. l=sl)
(vi |0<=i<size) si <= new_uid.l

These three assertions are trivially true. Now, consider the
read references of the EFFECTS section. The primitive V-function
h_uid_usedCnew_uid.id, si) represents several read references,
one for each possible value of "new_uid.id". By rule PDR2 we
know that all the write references of each instantiation of
"create_seg" are potentially dependent upon these read references.
In order to prove P4b, it must be shown that each of these write
references is at a level at least that of the read references.
Fortunately, all the read references are at the level "si", the
level of the visible function instantiation, and we have already
shown that all the write references are at least at this level.
This completes the proof for the function "create_seg".

Consider now the visible function "write_seg". We will
consider separately four different collections of instantiations
of this visible function:

case 1: write_allowedCsl, suid.l) = FALSE
AND read_allowedCsl, suid.l) = FALSE

case 2: write_allowed(sl, suid.l) = FALSE
AND read_allowedCsl, suid.l) = TRUE

case 3: write_allowedCsl, suid.l) = TRUE
AND read_allowedCsl, suid.l) = FALSE

case 4: write_allowedCsl, suid.l) = TRUE
AND read_allowed(sl, suid.l) = TRUE

In case 1, the first exception of all instantiations in the case
is true, and therefore, the exception value will always be 1. For
these instantiations, the exception value is the only write refer-
ence, is not dependent on any read references, and is at the level
of the instantiation by definition. Property P4 is, therefore,
trivially true. Case 2 follows the same reasoning. In case 3, all
the exceptions are always false and the exception value is always 0
and, therefore, the exception value is not dependent on any read
references for these instantiations. The only quoted primitive
V-function in the EFFECTS section is h_contents(suid, offset). To
prove P4a we can show that the level of all instantiations of this
primitive V-function is at least "si", the level of the visible
function instantiation. The level of all instantiations of h_contents
(suid, offset) is suid.l and, since we are considering only

PAGE A-17

instantiations in case 3, we know that write_allowed(sl, suid.l)
is true. We wish to prove that si <= suid.l, and this follows
directly from write_allowedCsl, suid.l) being true. In order to
prove P4b we must show that the level of the instantiation of ^h_
contents(suid, offset) is at least the level of the read reference
that is the unquoted version of this same primitive V-function
instantiation. Since the read reference and write reference in
question are for the same primitive V-function instantiation, their
security levels must be the same. In case 4 the exception value
is dependent on instantiations of the primitive V-functions h_seg_
exists(suid) and h_contents(suid, offset). Both these primitive
functions have a level of "suid.l". However, we know that suid.l
<= si because read_allowed(sl, suid.l) is true. The reasonging for
the EFFECTS section is similar to that of case 3 except that the
write reference of 'h_contents(suid, offset) is now dependent upon
the value of h seg exists(suid) as well as the previous value of
h_contents (suicT, oTfset). However, the security levels of h_contents
(suid, offset) and h_seg_exists(suid) are the same and P4b is easily
satisfied. This completes the proof of multilevel security for
"write_seg". The arguments for "delete_seg" and "read_seg" are
quite similar.

Although the sample specification is quite simple, the same
proof technique can be applied to more complex systems. The
added difficulty in proving more complex systems arises from the
increased number of read and write references and the more complex
techniques necessary to prove relationships between the security
levels of these read and write references. Systems that require
the use of global assertions in the proofs are even more difficult
because appropriate global assertions must be determined and the
validity of these global assertions must be proven. Although the
proofs may be more complex, the basic technique demonstrated in the
above example does not change.

AUTOMATING THE PROOFS

The proof of the simple specification of Fig. 1 is simple
but quite lengthy when fully documented. Proofs of complex systems
will be extremely lengthy. In general, the proof of multilevel
security of a specification is many times longer than the specifica-
tion. If these proofs are written manually, the probability of
their correctness is very small. Unfortunately, even a small error
in the design of a system can result in a large breach of security.
It is, therefore, necessary that there be a high degree of
confidence in the total correctness of the security proofs. Such a
high degree of confidence in the correctness of the proofs cannot
be effectively gained by manual generation and checking of the proofs.
The necessary degree of confidence can only be gained by automatic
generation or checking of proofs or some combination of automatic
and manual techniques.

PAGE A-18

The proof technique described above has been designed to
permit automatic generation of proof. The identification of
read references, write references, and potential dependencies
of the desired property P4 can be done very simply with knowl-
edge of the syntax and a little of the semantics of SPECIAL.
The proof of the relationships between the security levels of
the read and write references requires some theorem proving, but
the types of theorems involved are all of the same simple kind
and most of them can be handled by a simplifier. Those systems
that require global assertions in order to perform the proofs
will probably require human assistance in deriving the global
assertions, however, the proof of the global assertions can
probably be automated. For a given system specification, the
same theorems arise many times in proving the security of the
different visible functions. Once the security of a few of the
visible functions has been proven, the proofs of the remaining
functions follow similar patterns. Highly efficient operation
can be achieved if the automated prover is directed by a human
operator for the proofs of a few of the visible functions and
then uses the same techniques to automatically prove the security
of the remaining functions. Also, after the automated prover has
proved the security of a system specification once and is aware
of the necessary global assertions, it should be able to prove
the security of modified versions of the system with human assis-
tance. The use of such a semi-automated prover is essential to
having a high degree of confidence in the proofs, is within the
current state of the art of automated verification, and will be
more cost effective than manual proof techniques for large systems
even with the high initial cost.

Most of the tools necessary for constructing a semi-automated
prover for the security of specifications already exist. There
exists several theorem provers and simplifiers which should be
adequate for the types of theorems that will be generated. A pro-
gram exists to parse specifications written in SPECIAL and to con-
vert to a form suitable for processing. The necessary additional
programs are a verification condition generator that formulates the
theorems that express the desired relationships between the security
levels of the read and write references and a suitable human inter-
face. Verification condition generators and human interfaces have
been written to aid in the proof of properties in several other
languages and the ideas in these programs can be used to create pro-
grams suitable for proving the multilevel security of specifications.

APPLICATION TO THE MULTICS SPECIFICATIONS

The multilevel security model and the proof technique described
above can be applied to the Multics specifications. However, there
are two significant discrepancies between the security model and the
Multics specifications. First, the Multics specifications incorpor-
ate the notion of a trusted process, i.e., a process that is not

PAGE A-19

subject to the multilevel security constraints. Trusted
processes are clearly in violation of the general multilevel
security property (Vl) above, therefore, it is necessary to modify
the model in order to allow trusted processes to exist. The modifi-
cations necessary to PI, P2, P3, and P4 are all very simple,
however, they will not be described here. The modification involves
adding a new predicate to the definition of a system that is true
if the given visible function instantiation is subject to the multi-
level security constraints. During a proof it is not necessary to
prove anything about those visible function instantiations for which
the predicate is true.

The second difference arises from the necessity of partitioning
the primitive V-function instantiations into disjoint sets, one for
each security level. These partitions are not a function of time.
However, in the Multics specifications, the security levels associ-
ated with primitive V-function instantiations do change with time.
For example the security level of the primitive V-function h_seg_
contents(seguid, offset) is not determined until a segment with the
unique identifier seguid is created. Before the segment is created
the security level of this primitive V-function is undefined. Some
modification of the mathematical model might be found to permit the
security level of a primitive V-function to remain initially undefined,
however, it would probably be simpler to predefine the security level
of all unique identifiers and assign a suitable unique identifier to a
newly created segment. This solution applies equally well to all
dynamically created objects.

The proof of multilevel security of the Multics specifications
will require global assertions. One such global assertion would be:

h_kst_mode(procuid, segno)[1]
AND hjpprjringCprocuid) <= h_kst_rb Cprocuid, segno) [2]

=> h_read_allowed(h_proc_trusted(procuid), hjproc_al(procuid),
h_qc_al(h_seg_qc(h_kst_seguid(procuid, segno))))

Although this assertion seems rather formidable, it is quite easy
to prove because very few 0- and OV-functions modify the values of
the primitive V-function instantiations involved. Also, the number
of global assertions necessary to prove the multilevel security of
the Multics specifications should be small.

The Multics design also incorporates the notion of integrity.
Integrity is the formal dual of multilevel security and a dual model
for integrity can easily be stated. Precisely the same proof
techniques apply and, therefore, proof of integrity can be easily
achieved together with the proof of security.

PAGE A-20

MODULE SEGMENTS

TYPES

clearance: C INTEGER i | 0 < i AND i <= max_clearance);
category_set:

C VECTOR_OF BOOLEAN cs LENGTHCcs) = number_o£_categories);
security_level: STRUCTCclearance security_clearance;

category_set security_categories);
segment_uid: STRUCT(INTEGER id; security_level 1);

PARAMETERS

INTEGER max_clearance sC the highest clearance),
number_o£_categories;

DEFINITIONS

BOOLEAN read_allowedCsecurity_level subject_sl, object_sl)
IS subject_sl.security_clearance

>= object_sl.security^clearance
AND (FORALL INTEGER i | 0<i AND i <= nuinber_o£_categories

obj ect_sl.security_categories[i]
=> subject_sl.security_categories[i]);

BOOLEAN write_allowedCsecurity_level subject_sl, object_sl)
IS read_allowedCobject_sl, subject_sl);

FUNCTIONS

VFUN h_uid_used(INTEGER unique_integer; security level si)
-> BOOLEAN b;

s(true if unique_integer has been used before at
security level si)

HIDDEN;
INITIALLY b = FALSE;

VFUN h_seg_exists(segment uid suid) -> BOOLEAN b;
s(true if segment suicf exists)
HIDDEN;
INITIALLY b = FALSE;

VFUN h_contents(segment_uid suid; INTEGER offset)
-> INTEGER contents;

s(returns contents of word at offset in segment suid)
HIDDEN;
INITIALLY contents = ?;

Fig. 1 (continued on next page)

PAGE A-21

OVFUN create_segCINTEGER size) [security_level si]
-> segment_uid suid;

sC create a new segment with size number of words)
EFFECTS
EXISTS segment_uid new_uid li_uid_usedCnew_uid. id, si)

AND new_uid.l = si:
'h_uid_usedCnew_uid.id, si) = TRUE
AND suid = new_uid
AND "h_seg_existsCnew_uid) = TRUE
AND (FORALL INTEGER i | 0 <= i AND i < size:

'h_contents(new_uid, i) = 0);

OFUN delete_seg(segment_uid suid) [security_level si];
s(delete a segment with uid suid)
EXCEPTIONS
read_allowedCsl, suid.l) AND ~h_seg_exists(suid);
~write_allowedCsl, suid.l);

EFFECTS
FORALL INTEGER i: "h_contents(suid, i) = ?;
■'h_seg_exists (suid) = FALSE;

VFUN read_segCsegment_uid suid; INTEGER offset)
[security_level si] -> INTEGER contents;

s(returns the value of the item at offset in
segment suid)

EXCEPTIONS
~read_allowed(sl, suid.l);
"'h_seg_exists (suid) ;
h_contents(suid, offset) = ?;

DERIVATION
h_contents(suid, offset);

OFUN write_9eg(segment_uid suid; INTEGER offset;
INTEGER contents)[security_level si];

s(modify the contents of item offset in segment suid)
EXCEPTIONS
"write allowed(si, suid.l);
read_allowed(sl, suid.l) AND *'h_seg_exists (suid) ;
read_allowed(sl, suid.l) AND h_contents(suid, offset) = ?;

EFFECTS
h_contents(suid, offset) ~= ?
=> h_contents(suid, offset) = contents;

END MODULE

Fig. 1 - Example specification

PAGE A-22

Function Instantiation Security Level

Cprimitive V-function instantiations)

h._uid_used(unique identifier, si) si
h_seg_existsCsuidy suid.l
h_contentsCsuid, offset) suid.l

(visible function instantiations)

create_segCsize)[si] si
delete_segCsuid)[si] si
read_segCsuid, offset)[si] si
write_seg(suid, offset, contents)[si] si

Fig. 2 - Security levels of function instantiations

PAGE A-23

APPENDIX B

Because of funding limitations, the Air Force terminated
the effort which this document describes before the effort
reached its logical conclusion. The Air Force comments which
were present at the time the effort was terminated are as
follows:

1. The report does not provide a complete certification
plan. The report adequately treats the proof of
correspondence between the model and the top level
specification. There is no plan presented for the
remaining effort to ultimately insure the correspon-
dence between the model and the machine code represen-
tation of the kernel.

2. The report does not present sufficient data for a
management evaluation of the cost/effectiveness of the
automated tools. The report does not identify the
tools that will be required for the remaining stages
of the verification and the cost (effort) that will be
required to implement the tools.

3. On Page A-l, the purpose of the multilevel security
model is not clear. It is not known whether this model
is intended as an alternative [replacement) for the
MITRE model or as an intermediate step in the proof of
correspondence between the MITRE model and the formal
specification. The purpose of the model should be
identified, and its correspondence to either the DoD
security policy or the MITRE model needs to be demonstrated,

4. On Page A-2 and A-3, several of the definitions on these
pages are not formally complete. For example, F, Z and B
are not clearly defined for a one-tuple. The recursive
definitions of M and E do not have a "base" statement.

5. On Page A-5, Line 6, the substitution of P2a in PI appears
to have been made incorrectly. P2a was substituted for
the first rather than the last part of PI. It should have
been the last part.

PAGE B-l

 ' " ' n i i 11 11 ii ii ii i i i ii ii i i ru m j i M i ' i 11 ii i ii it 11 i 11 iiinti"*

^i. * * 111111 * 11111111 ..ii ^ t. i

*:
$■

E*,
;♦
*

:*
•*
:*
:♦:
:*;
*:
*■

:*:
:*;
*; *

* ♦
t
♦;

t*
*;
*:
*
:* :*
■*-,

*■

:*;
:*;
*: ;>;«

■♦-,

:*;
*:

t*:
*:

:*:
'!«

:*:

MISSION

OF THE

DIRECTORATE OF COMPUTER SYSTEMS ENGINEERING

The Directorate of Computer Systems Engineering
provides ESD with technical services on matters
involving computer technolpgy to help ESD system
development and acquisition offices exploit computer
technology through engineering application to enhance
Air Force systems and to develop guidance to minimize
R&D and investment coats in the application of computer
technology.

The Directorate of Computer Systems Engineering
also supports AFSC to insure the transfer of computer
technology and information throughout the Command,
including maintaining an overview of all matters pertain-
ing to the development, acquisition, and use of computer
resources in systems in all Divisions, Centers and
Laboratories and providing AFSC with a corporate
memory for all problems/solutions and developing
recommendations for RDT&E programs and changes in
management policies to insure such problems do not
reoccur.

I I l I I I I I I I ! M I • 'i 111 II i n r 11 i i 111 T i 11 1111 1111 11

:*
:♦
:♦
;♦
;♦
:♦

\ti
;♦
;♦
:♦
:*
:*
:♦, m
■*■

:*: :♦
:*:
♦:
♦; *;
*:

fc*
*:

*

;*:
■*. h*
♦

:*
■A

:*:
♦ :

it:
*;
*
*

;*:
:*:

r*
*

:♦:
■*•

*:
$

^.*.*.^^*.^^*^.^.»^^^^»**^^H^»»»»*»»^»»»»»»»»»»»»■»»■)^^i•■i<^■)^■■fr»»»■^l^»^■)i■»»»
" ' * '"' ■ '■ i i '

